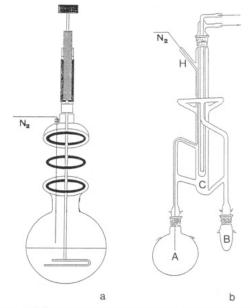
Optimized Likens-Nickerson Methodology for Quantifying Honey Flavors

Amina Bouseta and Sonia Collin*,†

Unité de Brasserie et des Industries Alimentaires, Université Catholique de Louvain, Place Croix du Sud 2/Bte 7, B-1348 Louvain-la-Neuve, Belgium


Dichloromethane extraction under an inert atmosphere followed by simultaneous steam distillationdichloromethane extraction appears to be a useful method for honey flavor quantification. The organoleptic features of extracts obtained in this way closely match those of the honey samples. Recovery factors obtained for a large number of chemicals highlight the critical impact of parameters such as oxygen level, extraction time, and cold finger temperature. While recovery factors must be around 70 tested chemicals when these optimized conditions are used, recovery factors must be taken into account for accurate quantification of hydrophilic compounds.

Keywords: Honey; flavor; terpenes; extraction; steam distillation

INTRODUCTION

To isolate volatile components from a complex matrix such as honey and to obtain very representative extracts remain major challenges to flavor chemists. Over the past 30 years, most studies in this field have been restricted to qualitative determinations. In the specific field of honey, accurate quantification now appears to be essential to evaluating flavor changes linked to new processing methods or long storage (microbiological or chemical degradation). Such knowledge would further be helpful in ascertaining a honey's floral origin without the ambiguity inherent in organoleptic tests. In this context, high concentrations of hydroxy ketones have already been reported as characteristic of Eucalyptus spp. and Banksia spp. honeys (Graddon et al., 1979). Citrus honeys (e.g. orange and lemon) are known to contain methyl anthranilate, a compound that other honeys seem to contain at concentrations of less than 0.5 ppm (Serra, 1988; White, 1975). A recent study (Bouseta et al., 1992) aimed at identifying the headspace composition of 84 unifloral honeys also revealed a range of compounds characteristic of the floral source (aldehydes in lavender honey; acetone in fir honey; diketones, sulfur compounds, and alkanes in eucalyptus honey). Further studies on less volatile flavor compounds are needed, however, to differentiate other kinds of honeys.

Scant quantitative data have been published in this area, probably due to the lack of accurate extraction methods. In 1973, Tschogowadse et al. attempted to isolate terpenoids in honey by steam distillation. One year later, Tsuneya et al. (1974) isolated 8-*p*-menthene-1,2-diol from an ether extract from 116 kg of linden (*Tilia* spp.) honey. Simple solvent extraction followed by concentration either under nitrogen or in a rotary evaporator was used by many workers in the following years (Berahia et al., 1993; Bonaga et al., 1986; Graddon et al., 1979; Steeg and Montag, 1987, 1988; Wootton et al., 1978). More recently, Tan et al. (1988, 1989a,b,

Figure 1. (a) Pre-extraction apparatus; (b) microextractor for simultaneous steam distillation-solvent extraction.

1990) proposed continuous liquid/liquid extraction with diethyl ether for the extraction of polar phenolic and acidic substances. This method was applied by Wilkins et al. (1993) to determine linalool derivatives and other heavy components in New Zealand honeys. Ferber and Nursten (1977) evaluated numerous flavor extraction protocols before selecting vacuum distillation at 65 °C as the method of choice. Bicchi et al. (1983) were the first to emphasize the importance of pre-extracting flavor compounds from sugars prior to heating. They proposed a two-step protocol including preliminary acetone extraction followed by simultaneous Likens-Nickerson steam distillation and solvent extraction (Likens and Nickerson, 1964; Nickerson and Likens, 1966).

In the present work, we have optimized this two-step method. Very good recovery factors are measured for most chemicals when very strict conditions are maintained. This makes it possible to plan a real quantification. Possibilities and limitations of the method are

^{*} Author to whom correspondence should be addressed.

[†] S.C. is Chercheur Qualifié from the Fonds National de la Recherche Scientifique.

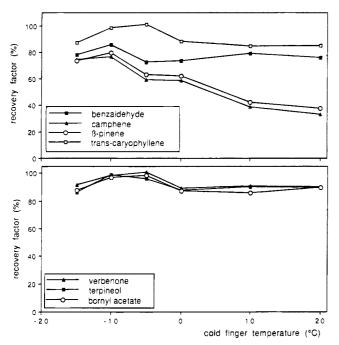

	ما	~	_	8	80	4	9	6
	llene, 80 ppl	K (%)	9	6	õ	ð	б	õõ
	s-caryphy concn 11	(ldq) (bpb)	32	93	10	53	53	51
	trans-caryphy initial concn 11	concn (ppb)	719	1154	1159	1108	1130	1045
	hpb	R (%)	60	97	97	94	95	92
	ornyl acetate al concn 1344	(qdd)	33	121	20	85	54	82
	bornyl ac initial concn	concn (ppb)	804	1308	1296	1259	1270	1233
	qd	R (%)	51	94	9 8	9 6	96	02
	ne, 152 J							
	verbenone initial concn 11	US (qdd	5	6	18	œ	ú	12
	initial	concn (ppb)	582	1080	1125	1105	1105	1171
	dqq (R (%)	61	66	66	94	96	94
	terpineol, concn 1450	SI) (dqq	37	122	31	67	54	68
•	t initial c	concn (ppb)	891	1435	1424	1358	1385	1359
l'ime (Step 2)	hpb	$\overset{R}{\overset{(\%)}{}}$	51	99 99	80	99 99	65	55
	-pinene, oncn 1003	(qdd)	11	28	33	36	23	48
histillatic	β -pinene, initial concn 10	concn (ppb)	512	667	800	657	652	555
team L	dqq	R (%)	49	62	77	68	61	55
asing S	camphene, initial concn 980 ppb	(dqq) (ppb)	14	36	37	14	20	20
by Incre	ca initial c	concn (ppb)	475	609	750	670	599	542
amed	hyde, 1219 ppb	$\stackrel{R}{(\%)}$	56	84	86	78	80	11
ent) Ubi	benzaldehyde, al concn 1219	(qdd) (IS	12	51	10	13	26	18
ton, Ferc	benzaldeh initial concn 1	concn (ppb)	682	1028	1042	946	972	866
Concentration, Percent) Obtained by Increasing Steam Distillation	steam	distillation time (min)	15	30	45	0 9	0 6	120

Table 2. Dichloromethane Extract Mean Concentrations (Parts per Billion) for Triplicates, Standard Deviations (SD), and Recovery Factors (R, Mean × 100/Initial

	b ^{e,}	R %)	86	85	89	01	98	87
	phyllen 1180 p					, ,		
	-caryophylle concn 1180	US (dqq)	1	62	ä	5 Q	1	110
	<i>trans-ci</i> initial co	concn (ppb)	1015	1003	1050	1192	1156	1027
	etate, 1344 ppb	R (%)	68	86	87	9 8	97	88
	oornyl acetate, al concn 1344	SD (dqq)	51	71	23	69	20	125
	born initial co	concn (ppb)	1196	1156	1169	1317	1304	1183
	2 ppb	R (%)	6	91	68	101	9 8	91
	verbenone, concn 1152	SD (dqq)	54	20	62	56	18	115
	verbei initial concr	concn (ppb)	1037	1048	1025	1163	1129	1048
	dqq 0	R (%)	96	6	88	96	66	86
	rpineol, oncn 145	SD (dqq)	86	28	28	72	31	134
(Step 2)	iene, terpineol, n 1003 ppb initial concn 1450 ppb initial	concn (ppb)	1305	1305	1276	1392	1435	1247
re (Ste	t initial	R (%)	38	42	62	63	80	74
nperature (pinene, ncn 100	SD (dqq	59	109	28	43	33	35
inger Tei	β -initial cc	concn (ppb)	376	421	622	632	802	742
Cold F	dqq (R (%)	33	39	59	59	77	75
easing	mphene, oncn 98	(dqq)	52	124	29	46	37	33
by Deci	ca initial c	concn (ppb)	316	290	577	575	755	735
tained	e, 9 ppb	$\stackrel{R}{(\%)}$	76	62	74	73	86	78
ent) Ob	benzaldehyde, camphene, β -pine initial concn 1219 ppb initial concn 980 ppb initial concn	SD (ppb)	65	35	7	16	10	11
ion, Peru	benz initial cc	concn (ppb)	927	962	897	885	1048	951
Concentration, Percent) Obtained by Decreasing Cold Finger 7		cold finger temp (°C)	20	10	0	<u>9</u> -	-10	-15

Figure 2. Mean recovery factors (percent) from triplicates obtained by increasing steam distillation time (step 2).

Figure 3. Mean recovery factors (percent) from triplicates obtained by decreasing cold finger temperature (step 2).

described. This technique has yielded organoleptically highly representative extracts for 220 unifloral honeys (data to be published).

MATERIALS AND METHODS

Honey Sample. A commercial Canadian honey was used for the extraction optimization. Pollen analyses revealed the presence of 97% clover pollen grains.

Honey Flavor Extraction. Solvent extraction (step 1) was first performed to remove the flavor compounds from the sugar matrix, which could induce artifacts by nonenzymatic browning reactions. After the vessel was purged with high-purity nitrogen, 100 g of honey and 200 mL of bidistilled dichloromethane were poured into the extraction apparatus shown in Figure 1a. The mixture was stirred for 60 min at 140 rpm under a 2 mL/min nitrogen stream to avoid oxidation reactions.

	ene, ppb	R (%)	98	98	9 6	91	48
overy	rans-caryophylle nitial concn 438	SD (ppb)	5	20	21	10	20
icates), Standard Deviations (SD), and Recover	<i>trans-ca</i> initial c	concn (ppb)	429	429	420	398	210
ns (SD)	etate, 500 ppb	R (%)	96	101	100	95	60
)eviatio	bornyl acetate, ial concn 500 j	SD (ppb)	6	15	14	ಣ	42
andard I	bornyl ace initial concn i	concn (ppb)	480	505	500	475	300
tes), Sti	dqq 1	R (%)	98	101	100	95	88
ripl	verbenone, initial concn 683 ppb	SD (dqq)	13	15	19	ಣ	18
: 0 °C, in T 2p 2)	ve initial c	concn (ppb)	699	689	683	649	601
Except ate (Ste	dqq (R (%)	98	66	66	94	87
licates (Flow R	erpineol, concn 600	SD (dqq)	16	13	17	4	16
for Quadruplicates (Except 0 °C ing Nitrogen Flow Rate (Step 2)	te initial e	concn (ppb)	588	594	594	564	522
Billion) for (Increasing P	dqq (R (%)	80	97	96	92	18
6 5	β -pinene, initial concn 599 ppb	SD (dqq)	24	29	35	16	29
(Parts p btained	β initial c	concn (ppb)	479	581	575	551	108
rations cent) O	ð ppb	R (%)	77	67	97	92	18
oncent on, Per	camphene, initial concn 926 ppb	SD (dqq)	43	38	44	18	46
t Mean C ncentrati	cal initial c	concn (ppb)	713	868	898	852	167
Extrac tial Co	e, 3 ppb	R (%)	86	86	100	92	78
nethane 100/Ini	benzaldehyde, initial concn 896 ppb	SD (dqq)	10	17	29	17	74
ichloron , Mean ×	ben initial o	concn (ppb)	771	878	896	824	669
Table 3. Dichloromethane Extract Mean Concentrations (Parts per Factors (R, Mean \times 100/Initial Concentration, Percent) Obtained by	N flow	rate (mL/min)	0	2	5 D	10	60

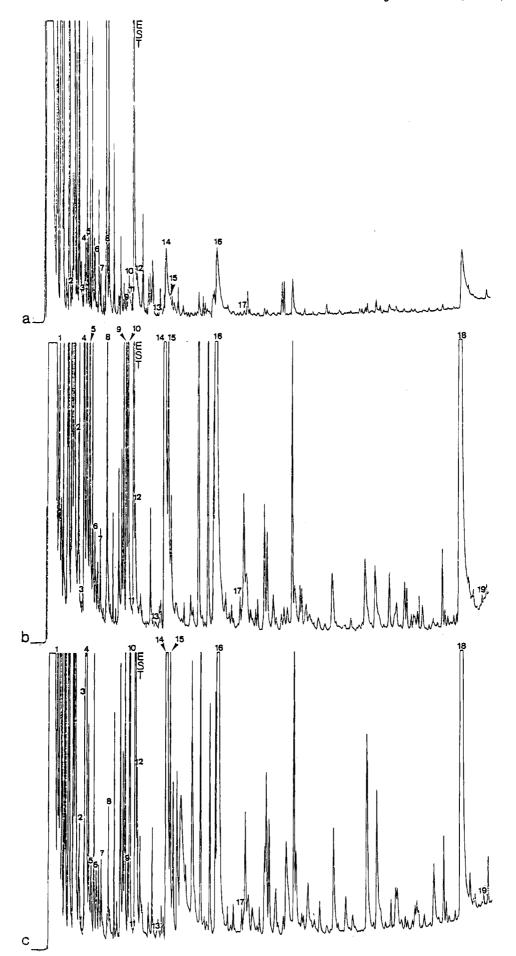


Figure 4. Chromatograms of honey extract with pentane (a), acetone (b), and dichloromethane (c).

				pentane		acetone		dichloromethane	
compound	PN	RT (min)	identified by	av (ppb)	CV (%)	av (ppb)	C V (%)	av (ppb)	C V (%)
methylfuran	1	5.6	GC	3	35	385	8	202	6
caproaldehyde	2	8.9	GC-MS	6	1 9	24	9	15	7
octane	3	9.5	GC-MS	2	99	1	19	20	11
furfural	4	9.7	GC-MS	5	18	656	2	467	8
furfuryl alcohol	5	10.1	GC-MS	28	22	370	24	51	5
1-hexanol	6	11.4	GC-MS	12	22	18	4	18	8
m-xylene	7	12.2	GC-MS	5	18	12	19	14	7
acetylfuran	8	13.2	GC-MS	35	18	247	28	35	10
5-methylfuraldehyde	9	16.0	GC-MS	8	24	157	8	22	5
benzaldehyde	10	16.3	GC-MS	9	18	254	4	230	10
α-pinene	11	16.9	GC-MS	8	21	1	12	5	8
phenol	12	17.4	GC-MS	3	32	51	18	51	20
$\hat{\beta}$ -pinene	13	19.6	GC-MS	8	19	19	10	22	7
benzyl alcohol	14	21.6	GC-MS	27	131	647	8	1109	13
phenylacetaldehyde	15	22.2	GC-MS	7	142	131	16	70	12
phenethyl alcohol	16	29.3	GC-MS	86	18	678	7	918	9
camphor	17	33.4	GC-MS	5	18	53	3	39	10
coumarin	18	66.5	CG-MS	262	10	2568	2	4451	5
trans-caryophyllene	19	68.7	GC-MS	11	19	3	6	3	10

^a Peak numbering (PN) gives the order of elution through the column; RT, column retention time (min); GC, gas chromatographic retention data compared with those of authentic samples; MS, mass spectral data compared with those of library compounds and/or those of authentic samples. Average concentrations (ppb, calculated with a 100% recovery factor) and coefficients of variation (CV, standard deviation \times 100/mean, %) obtained for three (in acetone and pentane) and five (dichloromethane) analyses of the same sample.

The dichloromethane extract was concentrated to 1 mL in a Kuderna-Danish flask maintained in a 45 $^{\circ}$ C water bath.

Steam distillation-solvent extraction (step 2) was carried out in a microextractor (Alltech 8910, Figure 1b) to remove flavor compounds from the coextracted heavy matrix; this yielded an extract suitable for on-column chromatographic injection. The previously obtained 1 mL extract was transferred to flask A (see Figure 1b) with five 200 μ L aliquots of dichloromethane used for washing the vessel and 30 mL of ultrapure (Milli-Q water purification system, Millipore, Bedford, MA) deoxygenated water. Dichloromethane and ultrapure, deoxygenated water (1.5 mL each) were introduced into area C by arm H. A few clean grains of carborundum were successively introduced into flasks A and B. Prior to the procedure, the entire system was purged with nitrogen (2-3)mL/min) for 5 min. Flask A was then heated in a 140 °C oil bath. After 3 min, flask B was heated in a 90 °C water bath. The vapors were condensed in area C by means of a cold finger maintained at -10 °C by a cryostat. The entire steam distillation-solvent extraction procedure was carried out under a 2 mL/min nitrogen flow. The steam distillation was stopped after 45 min, and 2 mL of the dichloromethane extract was removed from flask B. The dichloromethane layer in area C was then collected in flask B by introducing 3×1 mL of dichloromethane through arm H; flask B was finally washed with 3×0.5 mL of dichloromethane. Fifty microliters of 1000 ppm chloroheptane was added to the combined extracts as an external standard. The extract was then concentrated to 0.25-0.5 mL in a Snyder Kuderna and a micro-Dufton column. One microliter was analyzed by GC and GC-MS

Gas Chromatography Analytical Conditions. For gas chromatography, we used a Hewlett-Packard Model 5890 gas chromatograph equipped with a Hewlett-Packard Model 7673 automatic sampler, a cold on-column injector, a flame ionization detector, and a Shimadzu CR4A integrator. Analysis of the honey volatile compounds was carried out on a 50 m × 0.32 mm, wall-coated, open tubular (WCOT) CP-SIL5 CB capillary column (film thickness, $1.2 \ \mu$ m). The oven temperature was programmed to rise from 30 to 85 °C at 55 °C/min, then to 145 °C at 1 °C/min, and to 250 °C at 3 °C/min. The carrier gas was helium at a flow rate of 1.5 mL/min. The injector temperature was maintained at 3 °C above the oven temperature. The detector temperature was 275 °C. The minimum peak area for data acquisition was set at 500 μ V·s.

Gas Chromatography-Mass Spectrometry Analytical Conditions. The column (see above) was directly connected to an HP 5988 quadrupole mass spectrometer. Electron impact mass spectra were recorded at 70 eV. Spectral recording throughout elution was automatically performed with the HP59970C software. Peaks were identified by their enhancement after coinjection of authentic standard compounds and with the help of the NBS/EPA/NIH mass spectra library.

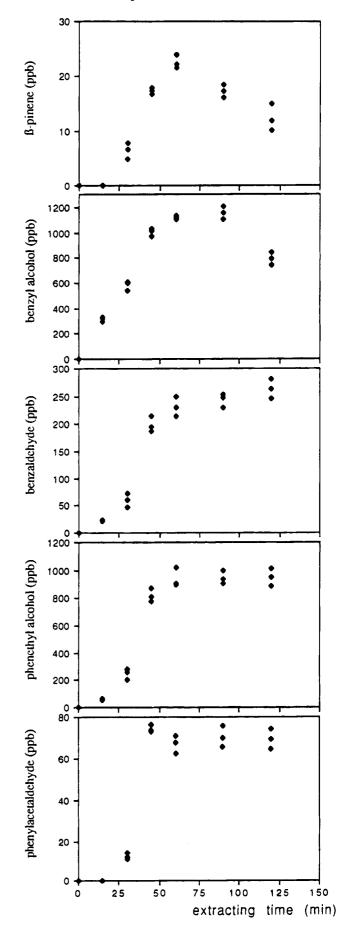
RESULTS AND DISCUSSION

Simultaneous Steam Distillation-Solvent Extraction (Step 2) Optimization. To obtain an accurate method for quantifying honey flavors, we optimized step 2 with respect to the distillation time, the cold finger temperature, and the oxygen level. This was done on a test mixture composed of the following suspected honey constituents: mono- and sesquiterpenes (camphene, β -pinene, and *trans*-caryophyllene), terpenic alcohols (terpineol), ketones (verbenone), esters (bornyl acetate), and aromatics (benzaldehyde). Recovery factors were checked with a 30 mL standard mixture of the above-listed compounds, diluted to concentrations close to 1 ppm in ultrapure, deoxygenated water. The pH of 5.7 at the beginning of the extraction was equal to the pH of a real honey extract [pH value obtained after extraction (step 1) of honey; see below].

We first determined the kinetic parameters of the steam distillation-solvent extraction step using all of the experimental conditions described under Materials and Methods apart from the nitrogen flow. Results on triplicates are listed in Table 1. Figure 2 clearly shows that the recovery factor reaches a maximum after 30 min. After 45 min and probably due to losses, the extraction efficiency slightly decreases for the most volatile compounds (benzaldehyde and monoterpenes; see Figure 2). With a 45 min extraction time, all of the recovery factors exceed 77%, with 97-99% for terpinol, verbenone, bornyl acetate, and *trans*-caryophyllene.

Next, we determined the optimal temperature of the cold finger. The data reported in Table 2 and Figure 3 emphasize how critical this parameter is. A temperature above -5 °C significantly decreases the extraction efficiency. The three most volatile chemicals, benzal-dehyde, camphene, and β -pinene, even require a temperature of -10 °C. In the case of monoterpenes, less efficient condensations (boiling points under 165 °C) and

oxidation reactions are assumed to occur when the cold finger temperature exceeds 0 °C, leading to very low recovery (33-42%).


As suggested above, monoterpenes must be protected from oxidation. To determine the real impact of oxygen. steam distillation-solvent extraction was performed with and without a stream of nitrogen gas. Table 3 shows the favorable effect of a 2 mL/min nitrogen flow. However, as the nitrogen flow rate is increased, the recoveries of benzaldehyde, camphene, and β -pinene decrease from 98, 97, and 97% (at 2 mL/min), respectively, to 78, 18, and 18% (at 60 mL/min), respectively. As expected, higher nitrogen flow rates reduce the efficiency with which the more volatile compounds are condensed in the cold finger. Recovery ratios exceeding 97% were reproducibly obtained with a 2 mL/min nitrogen flow for all standard compounds. As will be demonstrated in the last section, however, this method is not recommended for temperature-sensitive molecules such as C_4-C_5 lactones.

In our preliminary tests, the nature of the vessel used to evaporate the solvent proved also to be of prime importance. Rotary evaporators and nitrogen purges, both frequently used for honey extracts, lead to the loss (up to 90%) of many volatiles. The system used here, i.e. the Kuderna-Danish flask (for concentration to 1 mL) and micro-Dufton column (for concentration to 0.25 mL), avoids the loss of any compound.

Solvent Extraction (Step 1) Optimization. The favorable effect of a nitrogen flow was also proven at this first step. In triplicate measurements, peak intensities varied significantly according to the size of the oxidized fraction unless nitrogen was used. Therefore, all extractions described below were carried out under an inert atmosphere.

Three different extracting solvents, pentane, acetone, and dichloromethane, were investigated on a Canadian honey. All of the experimental parameters were as described under Materials and Methods, including the steam distillation-solvent extraction step (step 2). Low yields of volatile extracts were obtained with pentane (Figure 4a), but qualitatively matching chromatograms (see Figure 4b,c) were obtained with the two other solvents. After acetone extraction, however, the extracts were richer in furan derivatives (Table 4, PN 1, 4, 5, 8, and 9), suggesting that nonenzymatic browning reactions may occur more easily. This observation can be related to the higher solubility of fructose and glucose in acetone than in dichloromethane. Moreover, concentration to 1 mL is time-consuming when acetone is used. The small amounts of furan derivatives detected in the dichloromethane extract were not due to an artifact but came from the honey sample itself, as demonstrated by another method dedicated to the analysis of more volatile compounds (Bouseta et al., 1992).

We further determined on the same honey sample the optimal dichloromethane extraction time in triplicates. The kinetic curves obtained differed considerably from one compound to another (see Figure 5). For all compounds, the amount extracted increased, as expected, with time up to about 60 min, due to slow solubilization of the flavor compounds. After this time, step 1 efficiency decreased for monoterpenes (depicted for β -pinene in Figure 5). A similar effect was observed a bit later for benzyl alcohol. On the other hand, no significant loss was noticed until 120 min for compounds

Figure 5. Honey volatile concentrations calculated with a 100% recovery factor for different extracting times in step 1 (experiences in triplicates).

Table 5. Coefficients of Variation (CV, Standard Deviation \times 100/Mean, Percent) and Recovery Factors (R, Mean \times 100/Expected Concentration, Percent) Obtained for Five Analyses (Steps 1 and 2) of the Same Test Mixture (Concentrations around 100 ppb)

compound	RT (min)	CV (%)	R(%)	compound	RT (min)	CV (%)	R (%
hydrocarbons				aldehydes/ketones			
octane	9.6	11	94	3,4-hexanedione	8.8	11	96
<i>m</i> -xylene	12.2	8	90	caproaldehyde	8.9	8	98
o-xylene	13.4	8	97	2-furaldehyde	9.8	5	87
nonane	14.1	9	83	trans-2-hexenal	10.7	9	89
a-pinene	16.6	8	89	2-heptanone	12.4	6	83
β -citronellene	16.7	3	101	heptanal	13.1	8	94
camphene	17.5	5	89	trans-2-heptenal	16.0	6	94
sabinene	19.0	9	91	5-methylfurfural	16.1	7	85
β -pinene	19.5	11	87	benzaldehyde	16.4	9	96
2-carene	21.3	10	92	2-octanone	18.7	7	78
α-phellandrene	21.3	5	94	octanal	19.7	8	105
3-carene	22.0	5	99	salicylaldehyde	22.6	11	76
p-cymene	22.6	8	79	trans-2-octenal	24.5	12	78
limonene	23.4	8	99	2-nonanone	27.7	9	98
γ-terpinene	26.0	9	92	l-fenchone	28.1	12	99
1,2,3,4-tetramethylbenzene	35.3	7	102	thujone	29.8	10	87
<i>trans</i> -caryophyllene	68.7	10	103	o-methylacetophenone	31.8	11	92
a-humulene	71.6	- 9	98	propiophenone	34.7		108
hexadecane	81.2	7	94	menthone	35.0	11	101
alcohols/phenols/ethers	01.2	•	01	2-decanone	38.9	10	99
3-methyl-3-buten-1-ol	7.3	4	95	verbenone	40.4	8	106
3-methyl-2-buten-1-ol	8.2	3	97	trans,trans-2,4-nonadienal	40.8	7	98
4-hydroxy-4-methyl-2-pentanone	10.2	28	34	<i>p</i> -anisaldehyde	44.0	4	84
furfurvl alcohol	10.2	28 29	28	carvone	44.4	11	91
n-hexanol	10.6 11.5	29 8	20 93	pulegone	44.4 44.5	8	101
	$11.0 \\ 12.4$	3	103	perillaldehyde	44.5	9	101
cyclohexanol	12.4 17.5	25	43	2-undecanone	$\frac{40.3}{51.4}$	9 7	103
phenol						9	
2-octanol	19.7	5	104	trans,trans-2,4-decadienal	53.5	9	73
benzyl alcohol	21.7	26	38	esters	10.1	00	0
1,8-cineole	23.4	7	100	γ -butyrolactone	12.1	23	8
1-phenylethyl alcohol	24.3	14	72	γ -valerolactone	14.5	36	18
p-cresol	25.3	6	74	isoamyl butyrate	24.0	9	104
guaiacol	26.8	3	98	phenylethyl acetate	45.3	3	109
phenethyl alcohol	29.2	7	60	linalyl acetate	47.3	10	91
linalool	29.2	25	119	bornyl acetate	51.3	10	102
camphor	33.6	10	93	sulfur compound			
4-ethylphenol	35.0	14	62	dimethyl disulfide	7.8	8	86
borneol	36.8	12	102	furans			
menthol	37.6	9	102	2-methylfuran	5.5	22	72
terpinene-4-ol	38.1	10	96	2-acetylfuran	13.2	12	68
a-terpineol	39.4	10	105	nitrogen compounds			
4-allylanisole	39.7	8	100	indole	49.0	10	62
3-phenylpropan-1-ol	42.4	20	53	methyl anthranilate	55.8	18	70
β -citronellol	43.3	3	108				
trans-anethole	50.2	8	101				
thymol	50.7	8	105				
cinnamyl alcohol	51.0	15	28				
carvacrol	51.9	5	103				

such as benzaldehyde, phenylethyl alcohol, or phenylacetaldehyde. A 60 min solvent extraction time was selected.

58.7

10

85

eugenol

Reproducibility of Standard Mixture Extraction (Steps 1 and 2). The reproducibility of the optimized method (see above), calculated for five consecutive analyses of a standard mixture, is given in Table 5. For most low-polarity compounds (hydrocarbons, aldehydes, ketones, acyclic esters, dimethyl disulfide, terpenic alcohols, etc.), variation coefficients below 12% and recovery factors above 70% (above 90% for 35 chemicals) are obtained. Poor recovery factors are calculated, however, for hydrophilic alcohols (low volatility) such as 4-hydroxy-4-methyl-2-pentanone, furfuryl alcohol, phenol, benzyl alcohol, phenethyl alcohol, 4-ethylphenol, 3-phenylpropan-1-ol, and cinnamyl alcohol. In such cases, recovery factors must be taken into account for accurate quantification. As shown in Table 5, the method is not recommended for C_4-C_5 lactones.

LITERATURE CITED

- Berahia, T.; Cerrati, C.; Sabatier, S.; Amiot, M. J. Gas chromatography-mass spectrometry analysis of flavonoids in honey. *Sci. Aliments* **1993**, *13*, 15-24.
- Bicchi, C.; Belliardo, F.; Frattini, C. Identification of the volatile components of some piedmontese honeys. J. Apic. Res. 1983, 22, 130-136.
- Bonaga, G.; Giumanini, A. G. The volatile fraction of chestnut honey. J. Apic. Res. 1986, 25, 113–120.
- Bonaga, G.; Giumanini, A. G.; Gliozzi, G. Chemical composition of chestnut honey: analysis of the hydrocarbon fraction. J. Agric. Food Chem. 1986, 34, 319-326.
- Bouseta, A.; Collin, S.; Dufour, J. P. Characteristic aroma profiles of unifloral honeys obtained with a dynamic headspace GC-MS system. J. Apic. Res. 1992, 31, 96-109.
- Ferber, C. E. M.; Nursten, H. E. The aroma of beeswax. J. Sci. Food Agric. 1977, 28, 511-518.
- Graddon, A. D.; Morrisson, J. D.; Smith, J. F. Volatile constituents of some unifloral australian honeys. J. Agric. Food Chem. 1979, 27, 832-837.

- Likens, S. T.; Nickerson, G. B. Determination of certain hop oil constituents in brewing products. ASBC Proc. 1964, 5-13.
- Nickerson, G. B.; Likens, S. T. Gas chromatographic evidence for the occurrence of hop oil components in beer. J. Chromatogr. 1966, 21, 1-5.
- Serra, J. Determination of methyl anthranilate in citrus honey (citrus sp.) of eastern spain and its influence on the diastase activity of the honey. *Alimentaria* **1988**, *197*, 37–40.
- Steeg, E.; Montag, A. Proof of aromatic carboxylic acids in honey. Z. Lebensm. Unters. Forsch. 1987, 184, 17-19.
- Steeg, E.; Montag, A. Quantitative determination of aromatic carboxylic acids in honey. Z. Lebensm. Unters. Forsch. 1988, 187, 115-120.
- Tan, S.-T., Holland, P. T.; Wilkins, A. L.; Molan, P. C. Extractives from New Zealand honeys. 1. White clover, manuka, and kanuka unifioral honeys. J. Agric. Food Chem. 1988, 36, 453-460.
- Tan, S. T.; Wilkins, A. L.; Molan, P. C.; Holland, P. T.; Reid, M. A chemical approach to the determination of floral sources of New Zealand honeys. J. Apic. Res. 1989a, 28, 212-222.
- Tan, S.-T.; Wilkins, A. L.; Holland, P. T.; McGhie, T. K. Extractives from New Zealand honeys. 2. Degraded carotenoids and other substances from heather honey. J. Agric. Food Chem. 1989b, 37, 1217-1221.
- Tan, S. T.; Wilkins, A. L.; Holland, P. T.; McGhie, T. K. Extractives from New Zealand honeys. 3. Unifloral thyme and willow honey constituents. J. Agric. Food Chem. 1990, 38, 1833-1838.

- Tschogowadse, S. K.; Koblianidse, G. L.; Dembizkij, A. D. Aromatic components of honeys. *Lebensmittelindustrie* **1973**, 20, 225-228.
- Tsuneya, T.; Shibai, T.; Yoshioka, A.; Shiga, M. The study of shina (linden, *Tilia japonica Simk.*) honey flavor. *Koryo* 1974, 109, 29-35.
- White, J. Composition of honey. In *Honey, a Comprehensive Survey*; Crane, Ed.; Heinemann: London, 1975; pp 157-206.
- Wilkins, A. L.; Lu, Y.; Tan, S. T. Extractives from New Zealand honeys. 4. Linalool derivatives and other components from nodding thistle (*Carduus nutans*) honey. J. Agric. Food Chem. **1993**, 41, 873-878.
- Wootton, M.; Edwards, R. A.; Faraji-Haremi, R. Effect of accelerated storage conditions on the chemical composition and properties of Australian honeys. 3. Changes in volatile components. J. Apic. Res. 1978, 17, 167-172.

Received for review December 12, 1994. Accepted April 17, 1995.°

JF9407026

[®] Abstract published in *Advance ACS Abstracts*, June 1, 1995.